过去十年来,人工智能领域经历了从小模型到以Transformer为代表的大模型的百花齐放。直到ChatGPT横空出世,才终于将简洁、易用的“通用人工智能”带入了大众视野。英伟达CEO黄仁勋曾多次表示,他相信ChatGPT的诞生,意味着人工智能的iPhone时刻。这款革命性产品的背后,是OpenAI十年磨一剑的GPT系列大模型。
AI算法模型作为产业的核心环节,其本身的技术路线,将直接决定AI产业链最终形态,以及各产业环节的分工协作方式、价值分配结构等。
那么,GPT系列大模型会成为AI算法模型的终极答案吗?
通过对AI发展技术路线的梳理,中信证券分析师陈俊云、许英博等指出,GPT模型在交互逻辑、内容生成和理解上具备独特优势,AI算法模型最终会普遍朝GPT方向靠拢。
AI技术路径四阶段
从人工智能这个概念在1950年被提出开始,已经经历了从规则学习到机器学习再到神经网络的关键转变。分析师强调,本轮人工智能的技术突破都是基于在神经网络技术上的不断进步。过去10年里,AI模型经历了从小模型到以Transformer为代表的大模型的转变。
而细分近十年来模型发展的进步,分析师观察到了从以CNN、DNN为代表的传统神经网络小模型到以Transformer为代表的神经网络大模型转变的趋势。
具体来看,全球AI行业最近10年的发展历史,可以总结为4个阶段:
分析师总结称,尽管Prompting虽然牺牲了部分精度,但无需用任务区分器区别不同的任务,更接近于大众所理解的“通用人工智能”。
此前大众此前接触的人工智能如·Siri、小爱、小度音箱等,通过以任务分类的形式运行,准备不同任务的标注数据分别进行训练,是传统的Bert类模型。
简单来说,将预先设置好的任务类型放于模型背后,使用者通过描述任务类型系统来匹配对应的模块,缺点是使用者的指令需要清晰且无法执行没有预先设置的任务类型。
而GPT类模型面对用户不同的输入,模型可以自行判断给了用户更好的体验,这也更接近于大众理解的“通用人工智能”。
华尔街见闻此前多次提及,除了文字领域,LLM(大语言模型)已经被应用于图像、音视频等场景的问题求解中,并不断取得理想的效果。
而在LLM模型的技术路线上,GPT在内容生成、理解上的良好表现,以及更为可行的人、模型交互方式(prompt提示词),让GPT有望成为算法模型的终极答案。